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Structure of the presentation

Zoom 0: Stochastic Geometry and Wireless Networks

Zoom 1: RIS Enhanced Cellular Networks

Zoom 2: NTN Cellular Networks

Zoom 3: RIS & NTN Networks
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ZOOM 0: POISSON STOCHASTIC GEOMETRY

A few basic models:

– Spatial Poisson point process

– Spatial Shot–noise fields : Interference

– Poisson–Voronoi tessellation: “Connection to closest ”

[Chiu, Stoyan, Kendall and Mecke 13]
Stochastic Geometry and its Applications

[Baccelli, Blaszczyszyn, Karray 24]
Random Measures, Point Processes, & Stochastic Geometry
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STOCHASTIC GEOMETRY & CELLULAR NETWORKS

Started around 2000
branch of stochastic geometry dedicated to wireless networks

Extends to system level analysis of other networks
WiFi, IoT, NTN

Google query wireless stochastic geometry → millions of hits
more than 10 books, tens of thousands articles

Large scientific community in this field worldwide

Stochastic Geometry of RIS and NT Networks
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POISSON-VORONOI CELLULAR NETWORKS

- Cells

- Connections

- Users

- Stations

0

C 0

Base stations (BSs) ar-
ranged according to an ho-
mogeneous Poisson point
process of intensity λ in R

2

UEs

– located according to
some independent sta-
tionary point process

– each user is served with
the closest BS →
Poisson Voronoi Cells

Stochastic Geometry of RIS and NT Networks
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SHANNON RATE IN POISSON-VORONOI CELLULAR
NETWORKS WITH RAYLEIGH FADES

SINR experienced by typical user: SINR := S
I+N

– S: Signal power: stems from closest BS

– I: Interference power: from BSs outside Voronoi cell of
typical user

– N: thermal noise power

Shannon rate offered to typical user: T ∼ B log(1 + SINR)

Question: Law of the Shannon rate offered to typical user

Stochastic Geometry of RIS and NT Networks
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COVERAGE/SHANNON RATE

pc(T, λ, β) =
0

Pr
u
[SINR > T] =

0

Pr
u
[Shannon rate > B log(1 +T)]

As in statistical physics, this is equivalent to spatial averages

– Average fraction of users who achieve SINR at least T

– Average fraction of the network area in “T-coverage”

Assumptions on propagation for next result:

– Power law path loss :
at distance r, l(r) = rβ, β > 2, path loss exp.

– Rayleigh fading model: Exponential fade with mean 1
µ

Stochastic Geometry of RIS and NT Networks
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P-V-S THEOREM FOR RAYLEIGH FADES

Theorem
J.G. Andrews, F.B and R.K. Ganti, IEEE Tr. Comm. 11

pc(T, λ, β) = πλ

∞
∫

0

e−πλv(1+ρ)−µTNvβ/2dv with ρ = T
2
β

∞
∫

T
−2
β

1

1 + uβ/2
du

– Step 1 : Poisson–Voronoi : distance to closest BS: Rayleigh distr. → S

– Step 2 : Poisson–Voronoi : Poisson shot-noise outside a ball → I

– Step 3 : Poisson–Voronoi–Shannon : law of SINR and Shannon rate

Closed form expressions in e.g. interference limited case

Stochastic Geometry of RIS and NT Networks
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PROOF

Step 1: Poisson-Voronoi

pc(T, λ, β) = P[SINR > T]

=

∫

r>0

P[SINR > T]fr(r)dr

=

∫

r>0

P

[

Sr−β

N + Ir
> T

]

e−πλr
2
2πλrdr

=

∫

r>0

e−πλr
2
P[S > Trβ(N + Ir)]2πλrdr

Ir: interference power given the closest BS is at distance r

Stochastic Geometry of RIS and NT Networks
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PROOF (continued)

Step 2: Rayleigh. Since S ∼ exp(µ),

P(S > Trβ(N + Ir)) = E[exp(−µTrβ(N + Ir)] = e−µTr
βNLIr(µTr

β)

with LIr(s) the Laplace transform of the interference
Thus

pc(T, λ, β) =

∫

r>0

e−πλr
2
e−µTr

βNLIr(µTr
β)2πλrdr

Stochastic Geometry of RIS and NT Networks
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PROOF (continued)

Step 3: Interference as shot noise field

LIr(s) = exp



−2πλ

∞
∫

r

(

1− LF

(

sv−β))vdv





with LF the Laplace Transform of the general fading

Stochastic Geometry of RIS and NT Networks
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PROOF (continued)

Computational step 4: plugging in s = µTrβ gives

LIr(µTr
β) = exp



−2πλ

∞
∫

r

(

1− LF

(

µTrβv−β))vdv





= exp



−2πλ

∞
∫

0





∞
∫

r

(1− e−µTr
βv−βg)vdv



 f(g)dg





= exp
(

λπr2 − 2πλ(µT)
2
βr2

β
∞
∫

0

g
2
β [Γ(−2/β, µTg)− Γ(−2/β)] f(g)dg





with f(g) the PDF of F

Stochastic Geometry of RIS and NT Networks
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EXAMPLE OF USE

Example of System Level Question that can be answered:

When does BS densification lead to a decrease of spectral ef-
ficiency?

When N = 0

– Constant spectral efficiency for all densities !

pc(T, λ, β) =
1

1 + ρ(T, β)

Scale invariance: only true for power law attenuation

– For bounded attenuation functions

pc(T, λ, β) → 0 as λ→ ∞
Joint work with A. Alammouri, J. G. Andrews, IEEE

Trans. Information Theory, 2019
Stochastic Geometry of RIS and NT Networks
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STATE OF THE ART – EXTENSIONS – FUTURE

Further point processes: beyond Poisson,
Joint work w. J.G. Andrews, H. Dhillon, Y. Li, IEEE Tr. Comm. 15

Further propagation models: beyond scale invariance,
Joint work w. A. Alammouri, J.G. Andrews, IEEE Tr. Inf. Theory 19

Obstacle/Shadowing models: essential for millimeter waves,
Joint work w. J. Lee, IEEE Infocom 18

MIMO and BeamForming : optimal beam management
Joint work w. S. Kalamkar and NBL, IEEE Tr. Wireless 22

and also Power Control, OFDM, Coexistence with WiFi,
Successive Interference Cancellation, CoMP, Vehicular net-
works, etc.

Stochastic Geometry of RIS and NT Networks
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STATE OF THE ART – EXTENSIONS – FUTURE (continued)

Stochastic Geometry for 6G and Beyond

– RIS

– NTN

– Deterministic Latency Networking

– JCAS

– Cell Free

Worldwide efforts engaged on the matter

Stochastic Geometry of RIS and NT Networks
F.B.✫ ✪
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Structure of the presentation

Zoom 0: Stochastic Geometry and Wireless Networks

Zoom 1: RIS Enhanced Cellular Networks

Zoom 2: NTN Cellular Networks

Zoom 3: RIS & NTN Networks
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ZOOM 1: RIS ENHANCED CELLULAR NETWORK

RIS cluster with each BS

Blockages BSs → UEs

Each RIS

– reflects BS signal

– beamforms to UEs

Matérn Cluster Process model

– BS PPP of intensity λBS

– RIS PPP of intensity λRIS
in ring [r, R] around each
BS

– UE PPP of intensity λUE

Stochastic Geometry of RIS and NT Networks
F.B.✫ ✪
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MAIN TECHNICAL NOVELTY

Under OFDM Assumptions, Signal has two components

– Direct path with power QSD

– Reflected paths with RIS beamforming with power QSR

characterized by its Laplace Transform

Interference power QI characterized by its Laplace Trans-
form (LT of MCP known in closed form)

Coverage Probability

Need to separate the positive and negative parts in the RHS
of the last equation. Wiener Hopf Factorization

Stochastic Geometry of RIS and NT Networks
F.B.✫ ✪
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SYSTEM LEVEL QUESTIONS

Influence on Spectral Efficiency of

– Geometry of clusters : more or less spread?

– RIS resources organization
Bigger and lesser RISs or the other way around?

For optimal configuration

– Mean spectral efficiency gain brought by RISs

– Dependence of this gain in function of obstacle density

Performance Analysis of RIS-assisted MIMO-OFDM Cellular
Networks Based on Matern Cluster Processes, G. Sun, F. Bac-
celli, K. Feng, L.G. Uzeda Garcia, S. Paris, ArXiv 2024

Stochastic Geometry of RIS and NT Networks
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EXAMPLE OF ECONOMIC ANALYSIS

Stochastic Geometry of RIS and NT Networks
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Structure of the presentation

Zoom 0: Stochastic Geometry and Wireless Networks

Zoom 1: RIS Enhanced Cellular Networks

Zoom 2: NTN Cellular Networks

Zoom 3: RIS & NTN Networks
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ZOOM 2: NTN BASED CELLULAR NETWORKS

A constellation of LEO satellites

– Spherical geometry with orbiting BSs

– BSs move on orbits with given inclination

Need for new SG models

Orbits?, Voronoi?
Coverage? SINR?
Spectral Efficiency?

System level questions

– Interaction/Interference
between 5G and NTN

– Optimal orbit/satellite
density

– 5G offloading analysis

Stochastic Geometry of RIS and NT Networks
F.B.✫ ✪
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FIRST STEPS

A Binomial PP on the sphere
[Okati et al. 20] IEEE Trans.

Comm.

Binomial p.p. with satellites
uniformly distributed on a
sphere

Basic questions similar to
those on the plane but in
spherical geometry

Limitations

1. Geometry: No orbital
planes

2. Analysis: clustering of
interference ignored

Stochastic Geometry of RIS and NT Networks
F.B.✫ ✪
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ONGOING STEPS 1

Build a stochastic geometry
framework with requirements:

– Characterize orbital planes
with various longitudes
and inclinations

– Address distribution of
LEO satellites on orbital
planes

– Evaluate the SINR distri-
bution and spectral effi-
ciency

✺���✲✁���

①

✲✂���

�

✲✄���
�③

✄���
✁���

✂���

✁���

✂���

②

✄��� � ✲✺���✲✄��� ✲✂��� ✲✁���

Cox Point Processes for
Multi-Altitude LEO Satellite

Networks, C.S. Choi, F.
Baccelli, IEEE Trans. Veh.

Technol., 2024
Stochastic Geometry of RIS and NT Networks
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ONGOING STEPS 2

Build a stochastic geometry framework allowing one to:

– Evaluate impact of NTN on terrestrial

– Evaluate synergy between NTN and terrestrial

Ongoing work with J. Park and N. Lee ArXiv 2024

Stochastic Geometry of RIS and NT Networks
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MAIN TECHNICAL NOVELTIES

Representation of Orbits in SG

Inclination and Ascending Point

Stochastic Geometry of RIS and NT Networks
F.B.✫ ✪
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MAIN TECHNICAL NOVELTIES (continued)

Spherical Geometry

Visibility Cap, Visibility Arc of an Orbit

Stochastic Geometry of RIS and NT Networks
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MAIN TECHNICAL NOVELTIES (continued)

Distributions Needed to Analyze Downlink SINR

– Signal: Distance to closest visible satellite

– Interference: Shot Noise created by other visible satellites

Extension of the Laplace Transform approach to evaluate

– Probability of Coverage

– Spectral Efficiency

Latitude dependent for most deployments

Stochastic Geometry of RIS and NT Networks
F.B.✫ ✪
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Structure of the presentation

Zoom 0: Stochastic Geometry and Wireless Networks

Zoom 1: RIS Enhanced Cellular Networks

Zoom 2: NTN Cellular Networks

Zoom 3: RIS & NTN Networks
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ZOOM 3: NTN AND RIS

Question: How Much Can Reconfigurable Intelligent Surfaces
Augment Sky Visibility ?

Urban environments

Millimeter wave bands (either
5G or NTN) blocked by buildings

Connectivity of terrestrial users
to NTN entities

Visibility and coverage extension
provided by RIS installed on top
of buildings

Distribution of
Visibility Angle

Distribution of
RIS Augmented
Visibility Angle

Metrics:

– Angular

– Linear

– Coverage

Stochastic Geometry of RIS and NT Networks
F.B.✫ ✪
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SYSTEM MODEL

Urban Environment 3D Model

Segments : buildings in a 2D
plane

3rd Dimension : building
heights

Urban Environment 2D Model

{xi} building locations in
chosen direction

{hi} building heights
θ visibility angle

Stochastic Geometry of RIS and NT Networks
F.B.✫ ✪
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SYSTEM MODEL (continued)

M/M Model

– {xi}i∈Z : Homogeneous Poisson Point Process (λ) on R

– {hi} i.i.d. exponential RVs with parameter µ

M/D Model

– {xi}i∈Z : Homogeneous Poisson Point Process (λ) on R

– {hi} constant with common value µ−1

D/M Model ......

Extensions : All other models of queueing theory (e.g.
GI/GI.....)

Stochastic Geometry of RIS and NT Networks
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DISTRIBUTION OF VISIBILITY ANGLE

THEOREM In the M/M case,
the CDF of tan θ is

P[tan θ ≤ t] = e−
ρ
t , t ≥ 0,

which is a Fréchet distribution
with

– shape parameter α = 1

– scale parameter s = ρ = λ
µ

Proof obtained from the
Laplace Functional of the PPP

Comparison to 3GPP data

Closed form expressions for M/D and M/W as well

Stochastic Geometry of RIS and NT Networks
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JOINT DISTRIBUTION

THEOREM The joint density of (X+,H+) at (x,h) is

j(x,h) = λµe−µh−
λx
µh , h ≥ 0,x ≥ 0

Stochastic Geometry of RIS and NT Networks
F.B.✫ ✪
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JOINT DISTRIBUTION (continued)

The density of H+ at h is the Gamma distribution

g(h) = µ2he−µh

The density of X+ at x is

k(x) = 2λ
√
λxK1(2

√
λx)

where Kn(·) is the modified Bessel function of the second kind

Stochastic Geometry of RIS and NT Networks
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DISTRIBUTION OF RIS AUGMENTED
VISIBILITY ANGLE

Transmissive mode : improved visibility angle ΘT
x,h

Reflective mode : similar definition

Stochastic Geometry of RIS and NT Networks
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DISTRIBUTION

THEOREM
The conditional CDF of tanΘT given that (X+,H+) = (x,h) is

P[tanΘT
x,h ≤ t] = P[tanΘT ≤ t|X+ = x,H+ = h]

=

{

exp
(

−ρ
[

1
t − x

h

]

e−µh
)

, for 0 < t ≤ h
x,

1, for t > h
x

Closed form expressions for conditional

– density

– moments

Closed form expressions for conditional distribution of
tanΘR

Stochastic Geometry of RIS and NT Networks
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DISTRIBUTION (continued)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Visibility enhancement by transmissive RISs with λ = 1 and
µ = 1
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ANGULAR METRICS

Angular metrics to quantify the visibility enhancement by
RISs

γT1 ,
E[ΨT]

E[ψ]
, γR1 ,

E[ΨR]

E[ψ]

γT2 , E

[

ΨT

ψ

]

, γR2 , E

[

ΨR

ψ

]

Measure how much the visibility angle is increased by using
the RISs

Can be evaluated in integral form thanks to the analytical
formulas

Stochastic Geometry of RIS and NT Networks
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ANGULAR METRICS (continued)
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Visibility enhancement with respect to ρ
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LINEAR METRICS

NTN nodes are deployed at the same altitude
Extension of visible regions at this altitude by transmissive

RISs

Stochastic Geometry of RIS and NT Networks
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RESULTS ON LINEAR METRICS

M/M Model, Transmissive mode

Given (X+,H+) = (x,h)

|l(x,h)|= x +H
x

h

|L(x,h)|= x +
H

tanΘT
x,h

Conditional Means

|l(x,h)|= x +H
x

h
, E[|L(x,h)|] = x +

ehµh + xρ

hρ
H

Means

E[|l|]= 2 +Hµ

λ
, E[|L|]= ∞

Stochastic Geometry of RIS and NT Networks
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PROBABILITY OF COVERAGE

UAVs assumed to be distributed as a homogeneous PPP Φu

with intensity ν at altitude h +H

τ (x,h): conditional probability of coverage given (x,h) and
given no initial coverage

τ (x,h) = P[Φu(L(x,h)) > 0|Φu(ℓ(x,h)) = 0]= 1− ρ

ehµHν + ρ

Unconditioning

τ =
Hν

6ρ

(

π2 + 6 log
( ρ

Hν

)

log
(

1 +
ρ

Hν

)

−3
(

log
(

1 +
ρ

Hν

))2

− 6Li2

(

Hν

Hν + ρ

)

)

where Lin(z) is the polylogarithm function

Lin(z) =
∞
∑

k=1

zk

kn

Stochastic Geometry of RIS and NT Networks
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NUMERICAL RESULTS
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τ as a function of Hν for λ, µ = 1
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EXAMPLES: REAL ENVIRONMENTS

Numerical values of the visibility for two cities

Stochastic Geometry of RIS and NT Networks
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ONGOING/FUTURE RESEARCH

3D

Multi Hop

Refined statistics

SINR coverage

Economic model

Stochastic Geometry of RIS and NT Networks
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RELATED PUBLICATIONS

Performance Analysis of RIS-assisted MIMO-OFDM Cellu-
lar Networks Based on Matern Cluster Processes
G. Sun, F. Baccelli, K. Feng, L. G. Uzeda Garcia, S. Paris
CoRR abs/2310.06754, 2024

Cox Point Processes for Multi-Altitude LEO Satellite Net-
works
C.S. Choi, F. Baccelli, IEEE Trans. Veh. Technol., 2024.

How Much Can Reconfigurable Intelligent Surfaces Aug-
ment Sky Visibility: A Stochastic Geometry Approach
J. Lee, F. Baccelli, to appear in Trans. Wir. Comm., 2024.
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THANKS FOR YOUR ATTENTION
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