

F. Baccelli

Indo-French Seminar 6G Wireless Networks Challenges and Opportunities October 10, 2024

Structure of the presentation

- **Zoom 0: Stochastic Geometry and Wireless Networks**
- **Zoom 1: RIS Enhanced Cellular Networks**
- **Zoom 2: NTN Cellular Networks**
- **Zoom 3: RIS & NTN Networks**

Stochastic Geometry of RIS and NT Networks

1

• A few basic models:

 $\mathbf{2}$

- Spatial Poisson point process
- Spatial Shot–noise fields : Interference
- Poisson–Voronoi tessellation: "Connection to closest "
- [Chiu, Stoyan, Kendall and Mecke 13]
 Stochastic Geometry and its Applications
- [Baccelli, Blaszczyszyn, Karray 24]
 Random Measures, Point Processes, & Stochastic Geometry

POISSON-VORONOI CELLULAR NETWORKS

4

Base stations (BSs) arranged according to an homogeneous Poisson point process of intensity λ in \mathbb{R}^2

UEs

- located according to some independent stationary point process
- each user is served with the closest $BS \rightarrow$ **Poisson Voronoi Cells**

SHANNON RATE IN POISSON-VORONOI CELLULAR NETWORKS WITH RAYLEIGH FADES

- SINR experienced by typical user: SINR := $\frac{S}{I+N}$
 - S: Signal power: stems from closest BS
 - I: Interference power: from BSs outside Voronoi cell of typical user
 - -N: thermal noise power

5

- Shannon rate offered to typical user: $T \sim B \log(1 + SINR)$
- Question: Law of the Shannon rate offered to typical user

COVERAGE/SHANNON RATE

$$\mathbf{p}_{\mathbf{c}}(\mathbf{T}, \lambda, \beta) = \Pr_{\mathbf{u}}^{\mathbf{0}}[\mathbf{SINR} > \mathbf{T}] = \Pr_{\mathbf{u}}^{\mathbf{0}}[\text{Shannon rate} > \mathbf{B}\log(\mathbf{1} + \mathbf{T})]$$

- As in statistical physics, this is equivalent to spatial averages
 - Average fraction of users who achieve SINR at least T
 - Average fraction of the network area in "T-coverage"
- Assumptions on propagation for next result:
- Power law path loss : at distance r, $l(r) = r^{\beta}$, $\beta > 2$, path loss exp.
- Rayleigh fading model: Exponential fade with mean $\frac{1}{\mu}$

6

P-V-S THEOREM FOR RAYLEIGH FADES

■ Theorem J.G. Andrews, F.B and R.K. Ganti, IEEE Tr. Comm. 11

$$\mathbf{p_c}(\mathbf{T}, \lambda, \beta) = \pi \lambda \int_{\mathbf{0}}^{\infty} \mathbf{e}^{-\pi \lambda \mathbf{v}(1+\rho) - \mu \mathbf{TN} \mathbf{v}^{\beta/2}} \mathrm{d}\mathbf{v} \quad \text{with} \quad \rho = \mathbf{T}^{\frac{2}{\beta}} \int_{\mathbf{T}}^{\infty} \frac{1}{1 + \mathbf{u}^{\beta/2}} \mathrm{d}\mathbf{u}$$

– Step 1 : Poisson–Voronoi : distance to closest BS: Rayleigh distr. \rightarrow S

- Step 2 : Poisson–Voronoi : Poisson shot-noise outside a ball $\rightarrow I$
- Step 3 : Poisson-Voronoi-Shannon : law of SINR and Shannon rate
- Closed form expressions in e.g. interference limited case

Stochastic Geometry of RIS and NT Networks

7

EXAMPLE OF USE

• Example of System Level Question that can be answered:

When does BS densification lead to a decrease of spectral efficiency?

• When N = 0

12

- Constant spectral efficiency for all densities !

$$\mathbf{p_c}(\mathbf{T}, \lambda, \beta) = rac{\mathbf{1}}{\mathbf{1} +
ho(\mathbf{T}, \beta)}$$

Scale invariance: only true for power law attenuation

– For bounded attenuation functions

 $\mathbf{p_c}(\mathbf{T}, \lambda, \beta) \to \mathbf{0} \text{ as } \lambda \to \infty$

Joint work with A. Alammouri, J. G. Andrews, IEEE Trans. Information Theory, 2019

STATE OF THE ART – EXTENSIONS – FUTURE

Further point processes: beyond Poisson,

Joint work w. J.G. Andrews, H. Dhillon, Y. Li, IEEE Tr. Comm. 15

- Further propagation models: beyond scale invariance, Joint work w. A. Alammouri, J.G. Andrews, IEEE Tr. Inf. Theory 19
- Obstacle/Shadowing models: essential for millimeter waves, Joint work w. J. Lee, IEEE Infocom 18
- MIMO and BeamForming : optimal beam management Joint work w. S. Kalamkar and NBL, IEEE Tr. Wireless 22
- and also Power Control, OFDM, Coexistence with WiFi, Successive Interference Cancellation, CoMP, Vehicular networks, etc.

13

16

RIS cluster with each BS Blockages BSs \rightarrow UEs Each RIS

- reflects BS signal
- beamforms to UEs

MCP model for locations of RISs and BSs

1000

Matérn Cluster Process model

- **BS PPP** of intensity λ_{BS}
- RIS PPP of intensity λ_{RIS} in ring [r, R] around each BS
- UE PPP of intensity λ_{UE}

MAIN TECHNICAL NOVELTY

- Under OFDM Assumptions, Signal has two components
 - Direct path with power Q_{S_D}
 - Reflected paths with RIS beamforming with power $\mathbf{Q}_{\mathbf{S}_{R}}$ characterized by its Laplace Transform
- Interference power Q_I characterized by its Laplace Transform (LT of MCP known in closed form)
- Coverage Probability

$$\mathsf{P}_{c}(T) \triangleq \mathbb{P}(\mathsf{SIR} \geq T) = \mathbb{E}_{r}[\mathbb{P}(\mathsf{SIR} \geq T|r)] = \mathbb{E}_{r}\left[\mathbb{P}\left(\frac{Q_{\mathcal{S}_{D}}(r) + Q_{\mathcal{S}_{R}}(r)}{Q_{I}(r)} \geq T \middle| r\right)\right]$$

$$\mathbb{P}\left[\frac{Q_{S_D}(r)+Q_{S_R}(r)}{Q_I(r)}\geq T\Big|r\right]=\mathbb{P}\left[Q_{S_D}(r)\geq TQ_I(r)-Q_{S_R}(r)|r\right].$$

Need to separate the positive and negative parts in the RHS of the last equation. Wiener Hopf Factorization
Statistic Generator of DIS and NT Networks

SYSTEM LEVEL QUESTIONS

- Influence on Spectral Efficiency of
 - Geometry of clusters : more or less spread?
 - RIS resources organization Bigger and lesser RISs or the other way around?
- For optimal configuration
 - Mean spectral efficiency gain brought by RISs
 - Dependence of this gain in function of obstacle density

Performance Analysis of RIS-assisted MIMO-OFDM Cellular Networks Based on Matern Cluster Processes, G. Sun, F. Baccelli, K. Feng, L.G. Uzeda Garcia, S. Paris, ArXiv 2024

Stochastic Geometry of RIS and NT Networks $% \mathcal{T}_{\mathcal{T}}^{(n)}(\mathcal{T})$

ZOOM 2: NTN BASED CELLULAR NETWORKS

A constellation of LEO satellites

- Spherical geometry with orbiting BSs
- BSs move on orbits with given inclination

- Need for new SG models
 Orbits?, Voronoi?
 Coverage? SINR?
 Spectral Efficiency?
- **System level questions**
 - Interaction/Interference between 5G and NTN
 - Optimal orbit/satellite density
 - 5G offloading analysis

FIRST STEPS

Binomial p.p. with satellites uniformly distributed on a sphere

Basic questions similar to those on the plane but in spherical geometry

Limitations

1. Geometry: No orbital planes

2. Analysis: clustering of interference ignored

A Binomial PP on the sphere [Okati et al. 20] IEEE Trans. Comm.

ONGOING STEPS 1

Build a stochastic geometry framework with requirements:

23

- Characterize orbital planes with various longitudes and inclinations
- Address distribution of LEO satellites on orbital planes
- Evaluate the SINR distribution and spectral efficiency

Cox Point Processes for Multi-Altitude LEO Satellite Networks, C.S. Choi, F. Baccelli, IEEE Trans. Veh. Technol., 2024

ONGOING STEPS 2

Build a stochastic geometry framework allowing one to:

– Evaluate impact of NTN on terrestrial

– Evaluate synergy between NTN and terrestrial

Ongoing work with J. Park and N. Lee ArXiv 2024

 $\mathbf{24}$

- Distributions Needed to Analyze Downlink SINR
 - Signal: Distance to closest visible satellite
 - Interference: Shot Noise created by other visible satellites
- Extension of the Laplace Transform approach to evaluate
 - Probability of Coverage
 - Spectral Efficiency

 $\mathbf{27}$

Latitude dependent for most deployments

F.B.

ZOOM 3: NTN AND RIS

Question: How Much Can Reconfigurable Intelligent Surfaces Augment Sky Visibility ?

Urban environments

 $\mathbf{29}$

- Millimeter wave bands (either 5G or NTN) blocked by buildings
- Connectivity of terrestrial users to NTN entities
- Visibility and coverage extension provided by RIS installed on top of buildings

- Distribution of Visibility Angle
- Distribution of RIS Augmented Visibility Angle
- Metrics:
 - Angular
 - Linear
 - Coverage

DISTRIBUTION OF VISIBILITY ANGLE

THEOREM In the M/M case, the CDF of $\tan \theta$ is

32

 $\mathbb{P}[\tan\theta \leq \mathbf{t}] = \mathbf{e}^{-\frac{\rho}{\mathbf{t}}}, \quad \mathbf{t} \geq \mathbf{0},$

which is a Fréchet distribution with

- shape parameter $\alpha = 1$
- -scale parameter $s = \rho = \frac{\lambda}{\mu}$
- Proof obtained from the Laplace Functional of the PPP

Comparison to 3GPP data

Closed form expressions for M/D and M/W as well

DISTRIBUTION

 $\begin{array}{l} \bullet \quad \label{eq:theorem} \textbf{THEOREM} \\ \textbf{The conditional CDF of } \tan \Theta^{T} \mbox{ given that } (\mathbf{X}^{+}, \mathbf{H}^{+}) = (\mathbf{x}, \mathbf{h}) \mbox{ is} \\ \mathbb{P}[\tan \Theta^{T}_{\mathbf{x}, \mathbf{h}} \leq \mathbf{t}] = \mathbb{P}[\tan \Theta^{T} \leq \mathbf{t} | \mathbf{X}^{+} = \mathbf{x}, \mathbf{H}^{+} = \mathbf{h}] \\ = \begin{cases} \exp \left(-\rho \left[\frac{1}{t} - \frac{\mathbf{x}}{\mathbf{h}}\right] \mathbf{e}^{-\mu \mathbf{h}}\right), & \mbox{ for } \mathbf{0} < \mathbf{t} \leq \frac{\mathbf{h}}{\mathbf{x}}, \\ \mathbf{1}, & \mbox{ for } \mathbf{t} > \frac{\mathbf{h}}{\mathbf{x}} \end{cases} \end{cases}$

- Closed form expressions for conditional
 - density

36

- moments
- \blacksquare Closed form expressions for conditional distribution of $\tan\Theta^{\mathbf{R}}$

Stochastic Geometry of RIS and NT Networks $% \mathcal{T}_{\mathrm{N}}$

Can be evaluated in integral form thanks to the analytical formulas

RESULTS ON LINEAR METRICS

- M/M Model, Transmissive mode
- $\bullet \ \, \mathbf{Given} \ \, (\mathbf{X}^+,\mathbf{H}^+)=(\mathbf{x},\mathbf{h})$

$$|\mathbf{l}(\mathbf{x}, \mathbf{h})| = \mathbf{x} + \mathbf{H} \frac{\mathbf{x}}{\mathbf{h}}$$

 $|\mathbf{L}(\mathbf{x}, \mathbf{h})| = \mathbf{x} + \frac{\mathbf{H}}{\tan \Theta_{\mathbf{x}, \mathbf{h}}^{\mathrm{T}}}$

Conditional Means

$$|\mathbf{l}(\mathbf{x},\mathbf{h})| = \mathbf{x} + \mathbf{H} \frac{\mathbf{x}}{\mathbf{h}}, \qquad \mathbb{E}[|\mathbf{L}(\mathbf{x},\mathbf{h})|] = \mathbf{x} + \frac{\mathbf{e}^{\mathbf{h}\mu}\mathbf{h} + \mathbf{x}\rho}{\mathbf{h}\rho}\mathbf{H}$$

Means

41

$$\mathbb{E}[|\mathbf{l}|] = rac{\mathbf{2} + \mathbf{H}\mu}{\lambda}, \qquad \mathbb{E}[|\mathbf{L}|] = \infty$$

PROBABILITY OF COVERAGE

- UAVs assumed to be distributed as a homogeneous PPP Φ_u with intensity ν at altitude h + H
- $\tau(\mathbf{x}, \mathbf{h})$: conditional probability of coverage given (\mathbf{x}, \mathbf{h}) and given no initial coverage

$$\tau(\mathbf{x},\mathbf{h}) = \mathbb{P}[\mathbf{\Phi}_{\mathbf{u}}(\mathbf{L}(\mathbf{x},\mathbf{h})) > \mathbf{0} | \mathbf{\Phi}_{\mathbf{u}}(\ell(\mathbf{x},\mathbf{h})) = \mathbf{0}] = \mathbf{1} - \frac{\rho}{\mathbf{e}^{\mathbf{h}\mu}\mathbf{H}\nu + \rho}$$

Unconditioning

42

$$\tau = \frac{\mathrm{H}\nu}{6\rho} \left(\pi^2 + 6\log\left(\frac{\rho}{\mathrm{H}\nu}\right) \log\left(1 + \frac{\rho}{\mathrm{H}\nu}\right) - 3\left(\log\left(1 + \frac{\rho}{\mathrm{H}\nu}\right)\right)^2 - 6\mathrm{Li}_2\left(\frac{\mathrm{H}\nu}{\mathrm{H}\nu + \rho}\right) \right)^2$$

where $Li_n(z)$ is the polylogarithm function

$$\mathbf{Li_n}(\mathbf{z}) = \sum_{k=1}^\infty \frac{\mathbf{z}^k}{\mathbf{k}^n}$$

EXAMPLES: REAL ENVIRONMENTS

	Case 1	Case 2	Case 3
	(Dense urban)	(Urban)	(Suburban)
$\lambda(m^{-1})$	0.012	0.007	0.001
$\mu(m^{-1})$	0.02	0.02	0.02
$\mathbb{E}[\theta]$ (rad)	0.7732	0.5935	0.1695
$\mathbb{E}[\theta^T]$ (rad)	0.1956	0.1256	0.0195
$\mathbb{E}[\theta^R]$ (rad)	0.2214	0.1453	0.0201
$\mathbb{E}[l]$ (HAP) (m)	1.68×10^{4}	2.89×10^4	2.02×10^5
$\mathbb{E}[l]$ (Satellite) (m)	8.34×10^{5}	1.43×10^{6}	1.00×10^{7}
$ au_H$ (HAP)	0.797838	0.864512	0.976052
τ_H (Satellite)	0.893742	0.935147	0.989409

Numerical values of the visibility for two cities

 $\mathbf{44}$

RELATED PUBLICATIONS

- Performance Analysis of RIS-assisted MIMO-OFDM Cellular Networks Based on Matern Cluster Processes
 G. Sun, F. Baccelli, K. Feng, L. G. Uzeda Garcia, S. Paris CoRR abs/2310.06754, 2024
- Cox Point Processes for Multi-Altitude LEO Satellite Networks

C.S. Choi, F. Baccelli, IEEE Trans. Veh. Technol., 2024.

How Much Can Reconfigurable Intelligent Surfaces Augment Sky Visibility: A Stochastic Geometry Approach
 J. Lee, F. Baccelli, to appear in Trans. Wir. Comm., 2024.

Stochastic Geometry of RIS and NT Networks

46

