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Introduction Context

Context and motivation

Ultra Reliable and Low Latency Communications
(URLLC) is one of the use cases of 5G/6G.

URLLC: 99.999% reliability and latency < 1ms [3GPb].

Uplink communications require device coordination.

Traditional MAC protocols fail to meet the URLLC
requirements:

May miss a lot of transmission opportunities.
Do not account strict latency requirements.
Interference and collisions degrade latency and reliability.
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Introduction Uplink URLLC Access Solutions

Uplink URLLC Access Solutions

Grant-Based protocols: the scheduling of the devices is
performed by the BS, see e.g. [Ca22, NGS21].

Grant-Free protocols: devices access the channel without
the 4 way handshake.

Contention-Free: the BS pre-allocates uplink resources to the
devices [FNW19].
Contention-Based: users access the medium without
coordination of the BS [M+19].

Advanced radio interfaces: to further improve URLLC
performance.

Non Orthogonal Multiple Access (NOMA) [S+13].
Multi-frequency channel access [LZK10].
Multi-connectivity, macro-diversity [MKB+19].
Multiple-Input Multiple-Output (MIMO) [BCC+07].

Marceau Coupechoux Reinforcement Learning for URLLC



5/40

Introduction Challenges of Multiple Access for URLLC

Challenges of Multiple Access for URLLC

GB protocols: inherent latency due to access and polling

Contention-based GF protocols: collisions

Collision-free GF protocols: pre-allocation vs flexibility tradeoff

Device heterogeneity: requirements, capabilities and traffic

Dynamic environments: channels, number of devices, traffic

Advanced radio interfaces: how to fully exploit them at the
MAC layer?

⇒ We have explored Reinforcement Learning solutions to address
some of these challenges.
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Introduction State-of-the-art solutions

Deep RL Approaches for Uplink Access: SARL vs. MARL

Deep SARL Approaches
Deployed at the BS to enhance GF-like protocols:

Transmit Power [NAM+21].
Number of retransmissions [LDZ+21].
Uplink resources [LDZ+21].

Challenges: partial observability, protocol overhead.

Deep MARL Approaches
Deployed in devices for a decentralized coordination.
Implements Independent Learning (IL) or Centralized Training
Distributed Execution (CTDE)
Challenges: non-stationarity, partial observability, scalability
(CDTE), absence of theoretical guarantees of convergence.
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Deep Reinforcement Learning Framework
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Deep Reinforcement Learning Framework Mathematical Frameworks

Mathematical Framework

Agent

Environment

Action

State, Reward

V π(s0) = Est+1∼T (·|st ,at),at∼π(·|st)

∑
t≥0

γtR(st , at , st+1)|at ∼ π(·|st), s0)


V πi ,π−i

(s0) = Est+1∼T (·|st ,at),a−i∼π−i (·|st)

[
T∑
t=0

γtRi (st , at , st+1)|ait ∼ πi (·|st), s0

]
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Deep Reinforcement Learning Framework Proximal Policy Optimization (PPO)

Policy Gradient Methods

Policy Gradient (PG) algorithms [SMSM99] aim to maximize
V π(s0).

∇θV
πθ (s0) = Eτ∼(πθ,T )

[
T∑
t=0

∇θ log πθ(at |st)R(τ)

]
(1)

PG methods suffer from three major limitations:

The return creates high variance.
On-policy learning suffers from low sample efficiency.
A small change of θ can lead to a huge change of πθ.
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Deep Reinforcement Learning Framework Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO)

TRPO [S+15] updates the policy under a KL divergence
constraint.

max
θ

Es,a∼(πold,T )

[
πθ(a|s)
πold(a|s)

Aπold(s, a)

]
(2)

s.t. Es∼T
[
KL[πθ(·|s)||πold(·|s)]

]
≤ δ (3)

Aπold(st , at) is the advantage function:

Aπold(st , at) = Qπold(st , at)− V πold(st) (4)

PPO [Sa17] replaces the constraint by a clip:

Es,a∼(πold,T )

[
min

(
πθ(a|s)
πold(a|s)

Aπold(s, a), g(ν)Aπold(s, a)
)]

(5)

with g(ν) = clip
(

πθ(a|s)
πold(a|s) , 1− ν, 1 + ν

)
and ν ∈ [0, 1)
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Deep Reinforcement Learning Framework Proximal Policy Optimization (PPO)

PPO Pros and Cons

Pros:

Less computationally intensive than TRPO.

A flexible algorithm able to work with discrete or continuous
actions, in fully or partially observable environments.

Very good performance on classical benchmarks (Atari games)

Can be extended to multi-agent settings with good empirical
performance and possibly theoretical guarantees (monotonic
improvement).

Cons:

Performance is highly dependent on implementation details.
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NOMA-PPO: a Centralized DRL Scheduler for URLLC

Outline

1 Introduction

2 Deep Reinforcement Learning Framework

3 NOMA-PPO: a Centralized DRL Scheduler for URLLC

4 Other Approaches

Marceau Coupechoux Reinforcement Learning for URLLC



13/40

NOMA-PPO: a Centralized DRL Scheduler for URLLC Introduction

Approach

RL agent (Base station)

Environment (IoT devices)

reward
next observation

Action
(Polling)

The BS is the RL agent.

Avoid 4-way handshake protocol.

Allows collisions.

NOMA is used on the uplink.

2 main limitations:

Combinatorial action space.

Partial observability.
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NOMA-PPO: a Centralized DRL Scheduler for URLLC Introduction

Related Work

Combinatorial Action Space

Continuous DRL [DAa15]

Sequential prediction
[MIJD17]

Branching architecture
[TPK18]

GRU unit

Partial Observability

Belief-states [KLC98]

RNN [HS15]

Generative model [I+18].
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NOMA-PPO: a Centralized DRL Scheduler for URLLC System Model

Network model

Time is slotted and 5 slots constitute 1 frame.

D G U A/NG

T
f
 = 5T

s

D = downlink allocation

G = guard symbol

U = uplink transmission

A/N = downlink ACK/NACK

Figure 1: Slot Structure

The BS polls a vector of devices: (a1, a2, . . . , aK ) ∈ {0, 1}K .
Polled devices with at least a packet are said active.

It allocates orthogonal resources for uplink pilot transmissions
from the polled devices.

A device transmits its buffer information with its packet.
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NOMA-PPO: a Centralized DRL Scheduler for URLLC System Model

Interference Channel Model

A user k experiences:

a large scale fading gk(t)
fast fading: hk(t) = [hk1(t), · · · , hkna(t)]T ∈ Cna×1

Thermal noise: n ∈ Cna×1

The fast fading process hki (t), for k = 1, ...,K and
i = 1, ..., na, follows a time-correlated Gauss-Markov
model [KC07]:

hki (t) = ākhki (t − 1) + zk(t) (6)

where zk(t) ∼ CN (0, 1− ā2k) and āk the correlation
coefficient [JC94].

The coherence time Tc is controlled by āk and plays an
important role in learning the channel.
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NOMA-PPO: a Centralized DRL Scheduler for URLLC System Model

SIC Decoding Procedure

Compute  and Draw 

Received 
Signal

Try to decode the strongest signal

Remove the user from the interference

Base Station

Keep the user in the interference

Yes

No

Yes

No

γSICk (t) =
ηk(t)∑

j∈J1

(1− ϕj(t))ηjk(t)︸ ︷︷ ︸
before k in decoding order

+
∑
j∈J2

ηjk(t)︸ ︷︷ ︸
after k

+σ2
n

(7)
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NOMA-PPO: a Centralized DRL Scheduler for URLLC System Model

Traffic Models

We study two types of traffic models described in the 3GPP
standards [3GPa].

Probabilistic Periodic Traffic

Device 1

Receives a packet with probability 

0 drop drop

Device 2

Receives a packet with probability 

0 drop drop

→ Characteristics: predictable
traffic patterns, better use of
resources.

Probabilistic Aperiodic Traffic
At every device k , packets are
generated according to a Poisson
process of rate λk .

→ Characteristics: more
complex to handle for learning
algorithms because no discernible
patterns to learn and exploit.
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NOMA-PPO: a Centralized DRL Scheduler for URLLC System Model

Buffer Dynamics & Deadlines
We consider packets with strict deadlines.
We have: observed buffer, estimated buffer, real buffer

2 0 1 1 0

1 0 1 1 0

0 1 1 0 0

0 1 1 0 1

Buffer of : 

Buffer of  after successful decoding

1

Successful decoding + incrementation

Successful decoding + incrementation + new arrivals

Transmits

Buffer estimate before polling:
 

Time-to-deadline

Observed buffer:

Figure 2: Buffer Dynamics T B
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NOMA-PPO: a Centralized DRL Scheduler for URLLC Problem Formulation

Optimization Problem

We try to optimize the URLLC score: the number of
successful transmissions over the number of received packets.
Combines latency and reliability constraints.

Yet, the BS doesn’t have access to this information.

We want to find the policy π maximizing:

max
π

E
(T B ,T H ,π)

 ∞∑
t=0

∑
k∈U(t)

γtϕk(t)


s.t. B(t + 1) ∼ T B(B(t),ϕ(t))

H(t + 1) ∼ T H(H(t))

(P)

where γ ∈ [0, 1) is the discount factor.
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NOMA-PPO: a Centralized DRL Scheduler for URLLC Problem Formulation

POMDP Formulation

State: s(t) = ⟨B(t),η(t), o(t)⟩
Observation:

o(t) = ⟨u(t − 1),ϕ(t − 1),Bo(t − 1),ηo(t − 1), r(t − 1)⟩.

Action: a = (a1, a2, . . . , aK ) ∈ {0, 1}K

History: ℏ(t) = (a(0), o(0), . . . , a(t − 1), o(t − 1), o(t))
Reward function:

R(s(t), a(t)) =
∑

k∈U(t)

ϕk(t) (8)

Transition function: T = ⟨T B , T H , O⟩.
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NOMA-PPO: a Centralized DRL Scheduler for URLLC Problem Formulation

Agent State for solving the POMDP

Definition (Agent State)

At the beginning of each frame t ≥ 1, we define the Agent State
A(t) after the agent receives its observation o(t) as:

A(t) = ⟨BA(t),ηA(t), τ p(t), τ a(t), τ s(t), r(t − 1)⟩, (9)

bA
k (t): buffer estimates: follow the same buffer dynamics.

ηA(t): last known received power of the active devices.

τ p(t), τ a(t), τ s(t): last time the devices have been polled,
active and successfully decoded respectively.
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NOMA-PPO: a Centralized DRL Scheduler for URLLC Problem Formulation

Properties of the Agent State

The agent state at t, A(t) is Markovian:

A(t) = f A(A(t − 1), o(t), a(t − 1)) (10)

Proposition

A is a sufficient statistic for the action-observation history i.e.

P(s(t)|ℏ(t)) = P(s(t)|A(t)) (11)

Proposition

The tuple (SA,A, T A,RA) forms an MDP where
T A : SA ×A 7→ ∆(SA) is the agent state transition function and
RA : SA ×A 7→ R.
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NOMA-PPO: a Centralized DRL Scheduler for URLLC Problem Formulation

Branching Architecture

Figure 3: Branching Architecture. Image from [TPK18]

The policy network produces K activation probabilities coordinated by
hidden layers of coordination shared by all branches to capture
inter-dependencies.

Tradeoff between providing autonomy to the branches and coordinating
them.
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NOMA-PPO: a Centralized DRL Scheduler for URLLC Problem Formulation

Bayesian Policies

We use a prior f over the buffer and channel estimates.

EDF scheduler: polls the users with the smallest
time-to-deadline dh

k .

Channel Prior: deactivate the ”bad channels”.

fch(η
A(t), τ a) = (a1, . . . , aK ), (12)

where ak =

{
0 if ηk ≤ η∗ and τ ak ≤ τ∗

1 otherwise

Prior:
f (a;A) = EDF (BA(t))⊙ fch(η

A(t), τ a) (13)

Posterior policy:

q(a|A; θπ) ∝ π(a|A; θπ)⊙ f (a;A) (14)
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NOMA-PPO: a Centralized DRL Scheduler for URLLC Problem Formulation

NOMA-PPO training algorithm

Marceau Coupechoux Reinforcement Learning for URLLC
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NOMA-PPO: a Centralized DRL Scheduler for URLLC Problem Formulation

NOMA-PPO architecture

Linear
(input size, 256)

Linear
(256, 256)

Linear
(256, K)

ReLU

ReLU

Sigmoid

Linear
(input size, 256)

Linear
(256, 256)

Linear
(256, 1)

ReLU

ReLU

Policy network Value network

Linear
(256, 256)

Linear
(256, 256)

ReLU ReLU

...
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NOMA-PPO: a Centralized DRL Scheduler for URLLC Experiments

Training and convergence analysis
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Figure 4: Evolution of the URLLC score during training for 18 users.

The agent state can replace a RNN to handle partial observability.

The combination of the agent state and the prior is necessary.
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NOMA-PPO: a Centralized DRL Scheduler for URLLC Experiments

Performance on the 3GPP scenario
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Figure 5: URLLC score in the 3GPP deterministic
periodic scenario
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Figure 6: URLLC score in the 3GPP probabilistic
aperiodic scenario

EDF is an oracle wrt buffer info

iDRQN does not converge for K > 30.

BDQ does not manage partial observability.

Slotted Aloha and random scheduler are not aware of the URLLC
constraints.

Aperiodic traffic is more difficult to handle.
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NOMA-PPO: a Centralized DRL Scheduler for URLLC Experiments

Performance in Different Channel Conditions
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Figure 7: Long coherence time, Tc = 1.4ms, 10 users.
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Figure 8: Short coherence time Tc = 0.34ms, 10 users.

For long Tc , NOMA-PPO leverages CSI (outperforming even EDF).

For short Tc , NOMA-PPO does not manage to exploit enough CSI.
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NOMA-PPO: a Centralized DRL Scheduler for URLLC Experiments

Conclusion: Contributions

Agent state: sufficient statistic for the past observation-action
history.

1 It expresses past actions and observations in a compact way.
2 It converts the POMDP problem to an MDP.

NOMA-PPO: enhances PPO with:
1 a branching policy network architecture to linearly manage the

combinatorial action space.
2 a Bayesian policy, to use prior information about the wireless

problem [TN18].

We numerically outperform traditional MAC protocols and
DRL benchmarks across several 3GPP scenarios.
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Other Approaches

Other proposed approaches

Other approaches for the uplink URLLC scheduling problem with
strict deadlines:

FilteredPPO, a SARL algorithm using RNN for tackling
partial observability and invalid action masking to improve
performance [RDCT21].

SeqDQN, a MARL algorithm that sequentially updates
Q-functions based on a Dec-POMDP formulation. It reduces
non-stationarity, improves training speed and scalability vs
CDTE [RCTD23].

MCA-PPO and MCA-iPPO for the multi-channel access
problem. MCA-PPO benefits from the monotonic
improvement guarantee [RCT24b].

NOMA-PPO in [RCT24a]
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Other Approaches

Thank you for your attention!
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