Multi-user Communication using OTFS

Talk at Indo-French Seminar

"6G Wireless Networks: Challenges and Opportunities"

Kuntal Deka Assistant Professor, Department of EEE, IIT Guwahati

October 10, 2024

KORKARYKERKER POLO

Outline

- ▶ Wireless Channel in Delay-Doppler Domain
- ▶ Information Symbols over Delay-Doppler Domain
- ▶ Orthogonal Time Frequency Space (OTFS)
- ▶ Sparse Code Multiple Access (SCMA)
- ▶ OTFS-SCMA
- ▶ Convolutional Sparse Coding based Channel Estimation of OTFS-SCMA

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Wireless Channels

- ▶ A wireless channel can be represented in terms of impulse responses.
- ▶ If the BS, MS, and IOs are all static, then the channel is time invariant, with an impulse response $c(\tau)$; LTI system
- \blacktriangleright For time-varying channel, the impulse response is denoted by $c(\tau, t)$; LTV system:

$$
y(t) = \int_{-\infty}^{\infty} x(t - \tau) c(\tau, t) d\tau
$$

Frequency Selective Channel Time Selective Channel

KORKARYKERKER POLO

System-Theoretic Description of Wireless Channels

- \blacktriangleright *c*(τ , *t*), depends on two variables, τ and *t*, we can perform Fourier transformations with respect to either (or both) of them. This results in four different, but equivalent, representations.
- ▶ Fourier transforming the impulse response with respect to the variable τ results in the time-variant transfer function $H(t, f)$:

$$
H(t, f) = \int_{-\infty}^{\infty} c(\tau, t) \exp(-j2\pi f\tau) d\tau
$$

▶ A Fourier transformation of the impulse response with respect to *t* results in delay-Doppler response (Doppler-variant impulse response) $h(\tau,\nu)$:

$$
h(\tau,\nu) = \int_{-\infty}^{\infty} c(\tau,t) \exp(-j2\pi\nu t) dt
$$

KORKAR KERKER SAGA

System-Theoretic Description of Wireless Channels *contd.*.

 \blacktriangleright Finally, the function $h(\tau,\nu)$ can be transformed with respect to the variable τ , resulting in the Doppler-variant transfer function $B(\nu, f)$:

$$
B(\nu, f) = \int_{-\infty}^{\infty} h(\tau, \nu) \exp(-j2\pi f \tau) d\tau
$$

Wireless Channel in delay-Doppler Domain¹

 QQ

 \overline{AB} \overline{B}

▶ Special features: Sparsity, Separability, and Stability.

 1 Wireless Communication, by Andrew Molisch, John Wiley & Sons, 2012.

OFDM

Orthogonal Frequency Division Multiplexing (OFDM)

• OFDM inserts the data symbols in the (time)-frequency domain.

Motivations

- ▶ High Doppler will be a major problem for 6G communication.
- Doppler shift is given by

$$
f_D \propto \frac{v f_c}{v_w}
$$

where $v \rightarrow$ speed of UE, $f_c \rightarrow$ carrier frequency, and *v^w* is the speed of the propagation wave.

- ▶ Causes of Doppler:
	- \blacktriangleright High speed vehicles (v) like bullet trains.
	- \blacktriangleright High carrier frequency (f_c) like mmWave/THz communication.
	- \blacktriangleright Slow propagation medium (v_w) like acoustic waves in underwater communication ($v_w = 1,480$ m/s).
- Orthogonal Time Frequency Space (OTFS) modulation.

High Doppler in OFDM

OFDM in High Doppler Situation

 \triangleright Doppler shift is given by

$$
f_D \propto \frac{v f_c}{v_w}
$$

where $v \rightarrow$ speed of UE, $f_c \rightarrow$ carrier frequency, and v_w is the speed of the propagation wave.

- OFDM is sensitive to high Doppler.
- \blacktriangleright Inter-carrier interference (ICI).

KO KA (FRA 1988) DE XONO

• What if we insert the data symbols in the delay-Doppler domain?

Delay-Doppler Domain

Delay-Doppler Domain

- A time-domain signal may be time limited or frequency limited but not both simultaneously.
- There exists a set of time-domain signals localized simultaneously in delay and Doppler, which can be used as basis signals to devise OTFS modulation.

KORK EXTERNE PROVIDE

OTFS ²

Orthogonal Time Frequency Space (OTFS) Modulation

- OTFS is compatible with existing OFDM systems.
- Why is OTFS better than OFDM?
- The fraction of interfered symbols is less in OTFS compared to OFDM.

 $2Q$

∍

² R. Hadani et al., "Orthogonal Time Frequency Space Modulation," 2017 IEEE Wireless Co[mm](#page-11-0)[uni](#page-9-0)[catio](#page-10-0)[ns](#page-11-0) [and](#page-0-0) [Net](#page-26-0)[worki](#page-0-0)[ng](#page-26-0) Conference (WCNC), San Francisco, CA, USA, 2017, pp. 1-6, doi: 10.1109/WCNC.2017.7[9259](#page-9-0)24. ▶ ♦ त्या ▶ ♦ २ ॥ ♦ ♦

OTFS vs. OFDM 3

Why does OTFS perform better than OFDM in high Doppler?

Fraction of interfered information symbols vs. $\frac{\nu'}{\Delta f}$ for CP-OFDM and DD domain modulation.

The fraction of interfered symbols is less in OTFS compared to OFDM.

 QQ

^{3&}lt;sub>S.</sub> K. Mohammed, "Derivation of OTFS Modulation From First Principles," in IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp. 7619-7636, Aug. 2021, doi: 10.1109/TVT.2021.3069913. **≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト** B

Sparse Code Multiple Access (SCMA)

Sparse Code Multiple Access (SCMA)

- SCMA: code-domain NOMA technique.
- Incoming data streams are directly mapped to multi-dimensional codebooks.
- \blacktriangleright Shaping gain.
- SCMA codebook has a critical impact on the performance.
- Dedicated multi-dimensional sparse codebooks.
- \blacktriangleright $J \times K$ SCMA system, $K < J$.
- Nonzero elements $N < K$ in each column.
	- **K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶** ÷, 299

OTFS-SCMA ⁴

SCMA codeword allocation in DD domain

- \blacktriangleright A code-domain NOMA approach for OTFS using $J \times K$ SCMA scheme.
- \blacktriangleright *J* users access the NM resources simultaneously using sparse codewords $(K \times 1)$.
- ▶ The overloading factor is same as of basic SCMA model, $\frac{J}{K}$.

⁴ K. Deka, A. Thomas and S. Sharma, "OTFS-SCMA: A Code-Domain NOMA Approach for Orthogonal Time Frequency Space Modulation," in IEEE Transactions on Communications, vol. 69, no. 8, pp. 5043-5058, Au[g. 20](#page-12-0)2[1, do](#page-14-0)[i:](#page-12-0) [10.1](#page-13-0)[10](#page-14-0)[9/TC](#page-0-0)[OM](#page-26-0)[M.20](#page-0-0)[21.30](#page-26-0)[752](#page-0-0)[37.](#page-26-0)

OTFS-SCMA in downlink

$$
\blacktriangleright \mathbf{y}_{j,\text{vec}} = \mathbf{H}_j \mathbf{x}_{\text{sum},\text{vec}} + \mathbf{z}_j
$$

- ▶ Message detection
	- ▶ OTFS LMMSE detection: $\mathbf{\hat{x}}_{\text{sum,vec}} = \mathbf{H}^{\dagger}{}_{j} [\mathbf{H}_{j} \mathbf{H}^{\dagger}{}_{j} + \sigma^{2}{}_{n} \mathbf{I}_{MN}]^{-1} \mathbf{y}_{j,\text{vec}}$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 \equiv

 $2Q$

▶ AWGN based SCMA detection

OTFS-SCMA in uplink

$$
\mathbf{y}_{\text{vec}} = \sum_{j=1}^{J} \mathbf{H}_{j} \mathbf{x}_{j, \text{vec}} + \mathbf{z}
$$
OTFS and SCMA modulation effects are
\n
$$
= \mathbf{H}_{\text{all}} \mathbf{x}_{\text{all}} + \mathbf{z}
$$
inseparable from \mathbf{H}_{all} .
\nwhere $\mathbf{H}_{\text{all}} = [\mathbf{H}_{1} \mathbf{H}_{2} \dots \mathbf{H}_{J}]$ and $\mathbf{x}_{\text{all}} = [\mathbf{x}_{1, \text{vec}}^{T} \mathbf{x}_{2, \text{vec}}^{T} \dots \mathbf{x}_{J, \text{vec}}^{T}]^{T}$

イロト 不優 トイミト イミド

活

 299

$$
\mathbf{y}_{\text{vec}} = \begin{bmatrix} y_1 \\ \vdots \\ y_{MN} \end{bmatrix} = \begin{bmatrix} \mathbf{h}_{1,1} & \cdots & \mathbf{h}_{1,\frac{JMN}{K}} \\ \vdots & \cdots & \vdots \\ \mathbf{h}_{MN,1} & \cdots & \mathbf{h}_{MN,\frac{JMN}{K}} \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_{\frac{JMN}{K}} \end{bmatrix} + \begin{bmatrix} z_1 \\ \vdots \\ z_{MN} \end{bmatrix}
$$
 (1)

The *d^v* elements in **x***^j* should be considered together as a single entity or variable node as they correspond to a particular information symbol in the input side.

Figure: The update of message from an observation node in the single-stage MPA detection of OTFS-SCMA in uplink.

$$
U_{d \to c}(m) = \sum_{\left(\mathbf{v}_{c_1}, \mathbf{v}_{c_2}\right) \in \mathbb{A}_{c_1} \times \mathbb{A}_{c_2}} \frac{1}{\pi N_0} \exp\left[-\frac{1}{N_0} |y_d - \mathbf{h}_{dc} \mathbf{x}_{cm}\right]
$$

$$
- \mathbf{h}_{dc_1} \mathbf{v}_{c_1} - \mathbf{h}_{dc_2} \mathbf{v}_{c_2}|^2 |V_{c_1 \to d}(\mathbf{v}_{c_1}) |V_{c_2 \to d}(\mathbf{v}_{c_2})|
$$

Diversity Analysis of OTFS-SCMA

Theorem

Consider an OTFS-SCMA system with an $N \times M$ delay-Doppler grid Γ_{NM} and a $J \times K$ SCMA model with N and M being integer multiples of K. Let the wireless channel for the ith user be represented by P multipaths with the integer delay-Doppler tap pairs (l_x^j, k_y^j) , $i = 1, \dots, P, j = 1, \dots, J$. Consider the sets $S_k^j = \{ [k_{\nu_1}^j]_K, [k_{\nu_2}^j]_K, \ldots, [k_{\nu_p}^j]_K \}$ and $S_l^j = \{ [l_{\tau_1}^j]_K, [l_{\tau_2}^j]_K, \ldots, [l_{\tau_P}^j]_K \}$. In the downlink, for the jth user, the asymptotic diversity orders for Scheme-1 and Scheme-2 are given by $\left| S_k^j \right|$ and $\left| S_l^j \right|$, respectively. In the uplink, the asymptotic diversity orders for Scheme-1 and Scheme-2 are given by $\min \{|S_k^1|, |S_k^2| \dots, |S_k^J|\}$ and $\min \{|S_l^1|, |S_l^2| \dots, |S_l^J|\}$, respectively.

KELK KØLK VELKEN EL 1990

Diversity Analysis of OTFS-SCMA: Various Schemes

- Scheme-1: Number of distinct mod-K Doppler taps.
- Scheme-2: Number of distinct mod-K delay taps.

Table: Summary of asymptotic diversity of the schemes for $P = 2$, given $(k_{\nu_1}, l_{\tau_1}) = (0, 0).$

(k_{ν_2},l_{τ_2})	Scheme-1 Scheme-2
$k_{\nu_2} \neq 0, l_{\tau_2} \neq 0$	
$k_{\nu_2} \neq 0, l_{\tau_2} = 0$	
$k_{\nu_2}=0, l_{\tau_2}\neq 0$	

Depending on the channel condition, the codeword allocation scheme can be scheduled.

KORKARYKERKER POLO

Another Pattern

Figure: Two interleaving patterns for Scheme-3

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Optimal Codeword Allocation Scheme

Algorithm 1: Optimal codeword allocation scheme

```
input : OTFS-SCMA Parameters: N, M, K; Channel parameters:
          \mathcal{P} = \{(k_{\nu_1}, l_{\tau_1}), (k_{\nu_2}, l_{\tau_2}), \ldots, (k_{\nu_P}, l_{\tau_P})\}output: Optimal scheme
Initialization: |S_k|=Number of distinct mod-K Doppler taps; |S_l|=Number of
distinct mod-K delay taps;
if P \leq K then
    \mathbf{if} \ [S_k] = P then
         Scheme-1
    else
         if |S_l| = P then
          1 Scheme-2
         else
              Scheme-3: Using \mathcal{P}, design an interleaving pattern such that asymptotic diversity order is Pelse
     Scheme-3: Using P, design an interleaving pattern such that asymptotic
```
diversity order is P

KORK EXTERNE PROVIDE

Convolutional Sparse Coding based Channel Estimation ⁵

 QQ

⁵ A. Thomas, K. Deka, P. Raviteja and S. Sharma, "Convolutional Sparse Coding Based Channel Estimation for OTFS-SCMA in Uplink," in IEEE Transactions on Communications, vol. 70, no. 8, pp. 5241-5257, Aug. 20[22, d](#page-20-0)oi[: 10](#page-22-0)[.1](#page-20-0)[109/](#page-21-0)[TC](#page-22-0)[OM](#page-0-0)[M.20](#page-26-0)[22.31](#page-0-0)[8240](#page-26-0)[2.](#page-0-0)

Convolutional Sparse Coding

Dictionary structure of convolutional sparse coding.

- ▶ OTFS is also a 2D convolution process.
- ▶ Channel estimation is a sparse signal recovery problem.
- **Challenges:** Formulate channel estimation as CSC problem
	- Obtain dictionary structure from pilot vectors

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 Ω

Channel Estimation and Detection Procedure

Figure: Overview of the proposed channel estimation method for $\Gamma_{N,M}$, $N = 8, M = 5, J = 6, K = 4, l_{\tau} = 1, and L_p = 4.$

> QQ イロト イ押ト イミト イミト Ξ

Analysis of the pilot vector length

Lemma: 1 For successful channel estimation using the proposed method, the length L_p of pilot vector must satisfy the following condition:

$$
L_p \geq \max\left\{2J,\left\lceil cJ\log(J(2k_\nu+1))\right\rceil - 2k_\nu,k_\nu+1\right\} \quad \text{ with } \left[L_p\right]_K=0
$$

 \triangleright For EVA channel model:

$$
J = 6, K = 4, k_{\nu} = 16, c = 1.2
$$

$$
\rm L_p \geq 20
$$

Ongoing Works

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

▶ Design of OTFS for other multiple access techniques.

▶ Comparison of variants of OTFS.

Thank You Questions/Comments??

KO K K Ø K K E K K E K V K K K K K K K K K